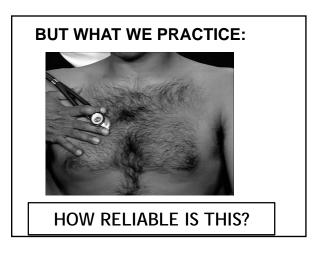

Spirometry:

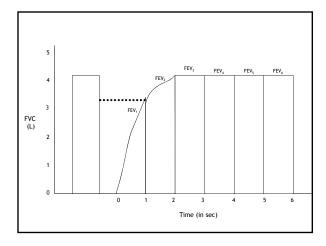

UNDERSTANDING BASICS HOW TO PERFORM QUALITY ASSURANCE

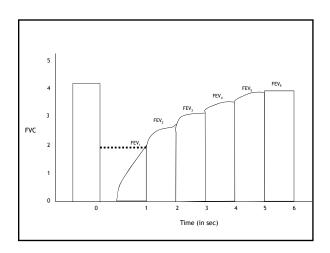
Dr. Rahul Kodgule

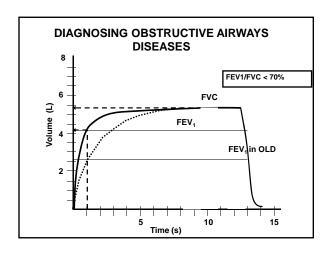
- American Study >20,000 US adults underwent history + clinical examination versus spirometry (1988-1994)
- If you relied on history and clinical examination to make a diagnosis of OAD, $\underline{63.3\%}$ remained under-diagnosis
- Even, 50% of patients with severe OAD were missed (NHANES Study, Mannino et al, Arch Int Med 2000; 160: 1683-1689)
- Similar observations in UK, France, Spain and other European countries

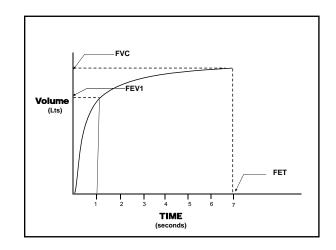
(Huchon, ERJ 2002; Pena, Am J Respir Crit Care Med 2001)

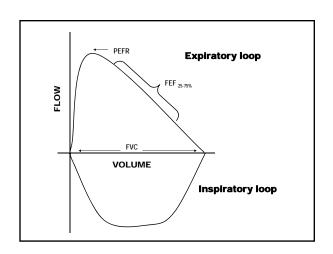
>50% CASES OF OAD REMAIN UNDETECTED IN CLINICAL PRACTICE, IF WE DO NOT USE SPIROMETRY

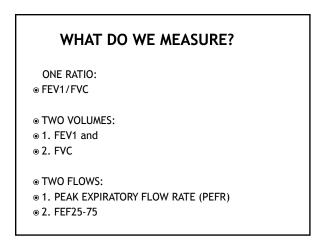

MOST COMMON INDICATION OF SPIROMETRY

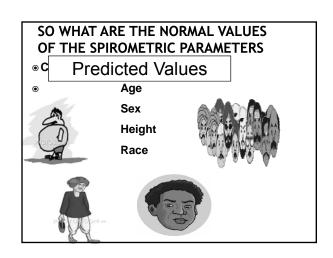

Measurement of airflow obstruction

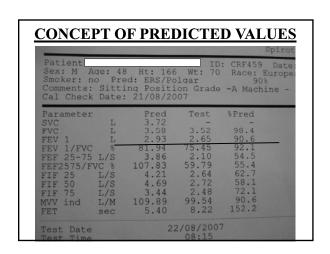

How can you measure airflow obstruction by just blowing into a machine?











Subject preparation:

Avoid

- * Smoking within 1 hr of testing
- * Consuming alcohol within 4 hrs
- * Vigorous exercise within 30 min
- * Large meal within 2 hrs
- * Tea /Coffee at least 12 hrs prior to test
- * Short acting bronchodilator within 6 hrs

Why withhold drug?

Baseline lung functions
Bronchodilator = false high values.

Drug Withholding Time (hrs)

- o Salmeterol / Formoterol 12 hrs
- o Tiotropium 24 hrs
 - Ipratropium
- 8 hrs
- o Terbutaline
- 6 hrs
- o Salbutamol
- 6 hrs
- Salbutamol -

SUBJECT TRAINING

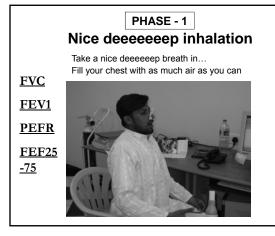
- ✓ Explain the procedure to the patient
- ✓ <u>Demonstrate</u> the procedure to the patient
- ✓ Give 1 or 2 trial runs with the mouth piece

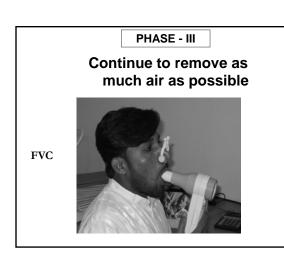
POSITION OF THE SUBJECT

- Sitting or standing
- Chair without wheels and having arms
- 美

- Remove Dentures
- \odot Standing preferable for obese, pregnant women & children
- ⊙Instruct patient to loosen tight fitting

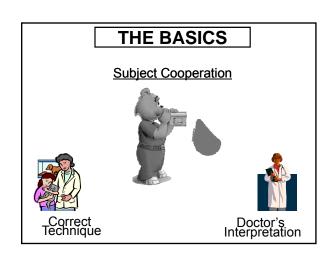
clothing


- ⊙ Elevate chin, extend neck slightly
- ⊙ Nose clip


Key points

- Lips must be sealed on the mouthpiece correctly
- Strong effort **right from the start** of the test.
- Make sure that patient removes every single ml of air from his lungs
- Patient must remain upright.
- Reassure and encourage at all times.

PROCEDURE

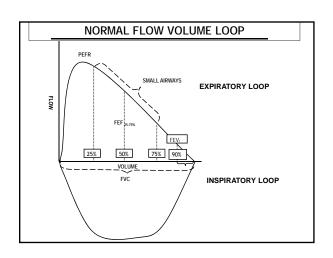


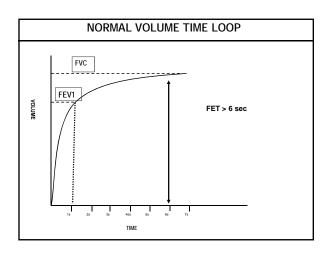
WHEN TO STOP? 1. Patient becomes too breathless to perform the test. 2. Look for - Acceptability: Look at curves (both flow-volume & volume-time) and decide - Repeatability: Difference between the two best blows for FEV1 and FVC is <5% (around 150ml) 3. At least 3 maneuvers which are acceptable & repeatable should be obtained 4. Maximum - 8 times Remember: A poorly performed spirometry increases the risk of misinterpreting results

IMPORTANT PARAMETERS		
Parameter	Definition	Importance
FVC (forced vital capacity)	maximum volume of air which can be exhaled or inspired during either a maximally forced (FVC) or a slow (VC) maneuver	VC is normally equal to FVC unless airflow obstruction is present, in which case VC is usually higher than FVC
FEV1 (forced expired volume in one second)	volume expired in the first second of maximal expiration after a maximal inspiration	useful measure of how quickly full lungs can be emptied
FEV1/FVC	FEV1 expressed as a percentage of the VC or FVC (Normal 70-90%)	gives a clinically useful index of airflow limitation
FEF25-75%	average expired flow over the middle half of the FVC maneuver	sensitive measure of small airways narrowing
PEF (peak expiratory flow)	maximal expiratory flow rate achieved	sensitive measure of large airways narrowing

IMPORTANT PARAMETERS			
Parameter	Definition		
FVC (forced vital capacity)	maximum volume of air which can be exhaled or inspired during either a maximally forced (FVC) or a slow (VC) maneuver		
FEV1 (forced expired volume in one second)	volume expired in the first second of maximal expiration after a maximal inspiration		
FEV1/FVC	FEV1 expressed as a percentage of the VC or FVC (Normal 70-90%)		
FEF25-75%	average expired flow over the middle half of the FVC maneuver		
PEF (peak expiratory flow)	maximal expiratory flow rate achieved		

IMPORTANT PARAMETERS


- 1. FEV1
- 2. FVC
- 3. FEV1/FVC
- 4. FEF (25-75)
- 5. PEF


SIGNIFICANCE OF FEV1

- DIAGNOSING OAD
- MONITORING RESPONSE TO TREATMENT

SPIROMETRY GRAPHS

- 1. FLOW VOLUME LOOP
- 2. VOLUME TIME GRAPH

ACCEPTIBILITY CTITERIA

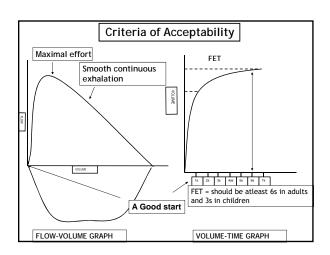
- Test was initiated from full inspiration
- · The test was performed with a rapid start
- A continuous maximal expiratory manoeuvre/effort throughout the test (i.e. no stops and starts) was achieved
- There was no evidence of hesitation, leaks or cough during the test
- The PEF has a sharp rise (peak)
- No glottis closure (Valsalva)
- No obstruction of the mouthpiece (e.g. by the tongue or teeth)
- No evidence that the patient took an additional breath during the expiratory manoeuvre
- No premature termination.(i.e. expiration continued for ≥ 6 seconds)

ATS/ERS CRITERIA

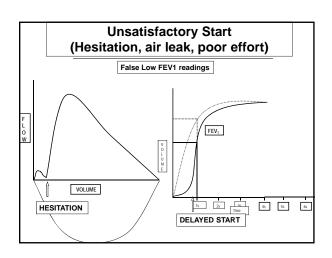
FOR ACCEPTABILITY:

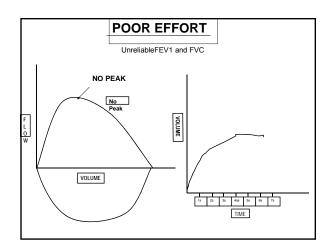
- Should be free from the following artefacts:
- Cough during the first second of exhalation
- Glottis closure that influences the measurement
- Early termination or cut-off
- Effort that is not maximal throughout
- Leak
- Obstructed mouthpiece

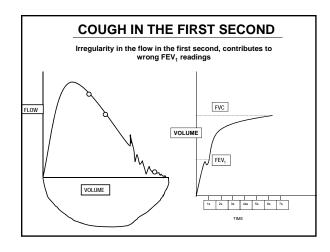
Should have good starts:

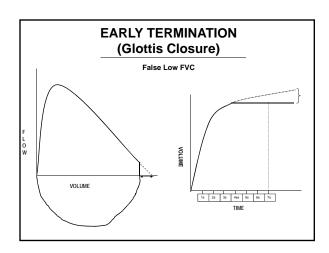

 \odot Extrapolated volume < 5% of FVC or 150 ml, whichever is greater

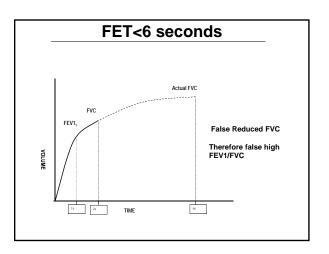
They should show satisfactory exhalation:

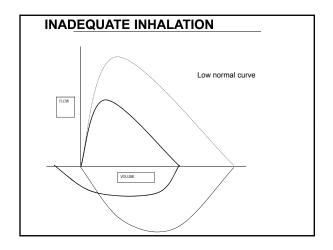

 Duration of ≥ 6 s (3 s for children) or a plateau in the volume-time curve or if the subject cannot or should not continue to exhale

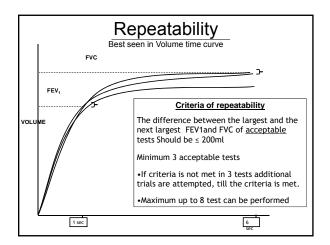

• REPEATABILITY CRITERIA:


- The two largest values of FVC must be within 150ml of each other
- The two largest values of FEV1 must be within 150ml of each other
- Save as a minimum, the three acceptable manoevres




Inadequate inhalation Poor Effort Delayed start: Excessive hesitation, air leak Coughing: in the first second or any other cough, which according to technician will, interfere with the measurements Early termination of expiration: glottis closure, hesitation. Obstruction due to tongue or teeth. Extra breath taken in the maneuver Forced expiratory time(FET) less than 6 secs.





ATS/ERS CRITERIA

FOR ACCEPTABILITY:

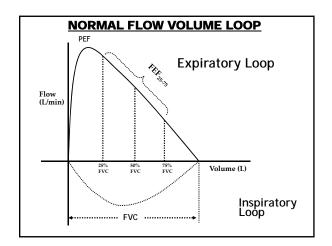
- Should be free from the following artefacts:
- Cough during the first second of exhalation
- Glottis closure that influences the measurement
- Early termination or cut-off
- Effort that is not maximal throughout
- Leak
- Obstructed mouthpiece

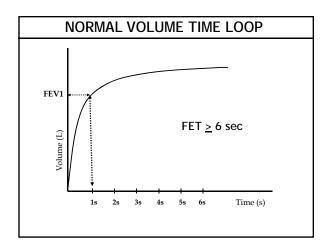
Should have good starts:

Extrapolated volume < 5% of FVC or 150 ml, whichever is greater

They should show satisfactory exhalation:

 Duration of ≥ 6 s (3 s for children) or a plateau in the volume-time curve or if the subject cannot or should not continue to exhale


• REPEATABILITY CRITERIA:

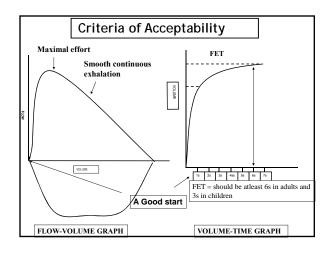

- $\ensuremath{\mathfrak{G}}$ The two largest values of FVC must be within 150ml of each other
- The two largest values of FEV1 must be within 150ml of each other
- Save as a minimum, the three acceptable manoevres

INTERPRETATION OF THE GRAPHS

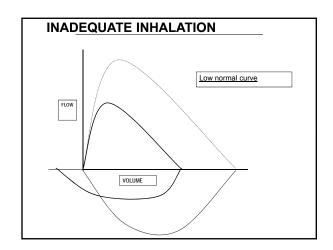
SPIROMETRY GRAPHS

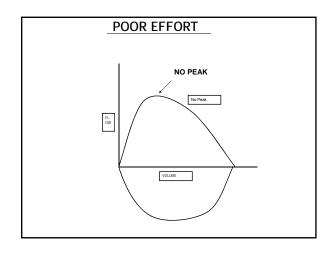
- 1. FLOW VOLUME LOOP
- 2. VOLUME TIME GRAPH

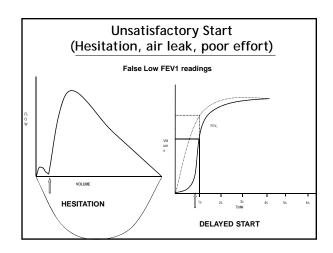
ACCEPTIBILITY CTITERIA

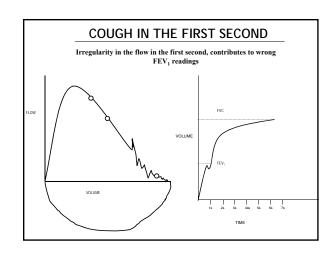

The inspiration should be adequate.

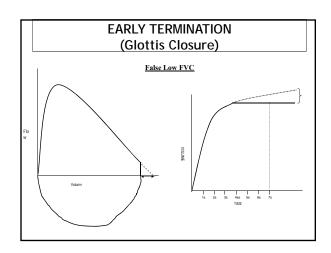
The expiratory effort should be maximal, smooth and cough free.

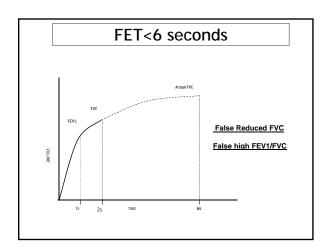

The test was performed with a rapid start

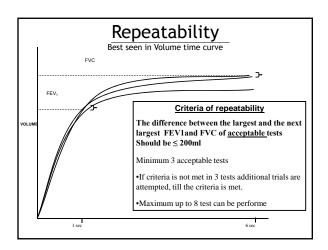

The PEF has a sharp rise (peak)

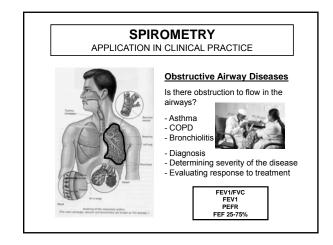

The expiration time (FET) was \geq 6 sec




UNACCEPTABLE TEST ▶ Forced expiratory time(FET) less than 6 secs. ▶ Inadequate inhalation ▶ Poor Effort ▶ Delayed start: Excessive hesitation, air leak ▶ Coughing: in the first second or any other cough, which according to technician will, interfere with the measurements ▶ Early termination of expiration: glottis closure, hesitation.







ASTHMA OR COPD?

- Bronchodilator reversibility test
- Baseline FEV1 by spirometry. Administer $\bf 200mcg$ Salbutamol by inhaled route and then measure FEV1 after 15-30 mins.
- Baseline FEV1. Administer oral steroids for 10 days or inhaled steroids for 4 weeks. Repeat FEV1.

If the FEV1 improves by 12% and 200mL

- 80% chance that this is Asthma
- 20% chance that this is COPD

If the FEV1 does not improve by 12% and 200mL

- 80% chance that this is COPD
- 20% chance that this is Asthma

CLASSIFYING ASTHMA & COPD SEVERITY

(Using FEV1 % predicted values)

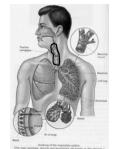
ASTHMA 60 - 80 rule

COPD 30 - 50 - 80 rule

Pharmacotherapy guidelines for Asthma and COPD are based on severity of the disease

COPD: If FEV1 < 60% predicted – Start inhaled corticosteroids

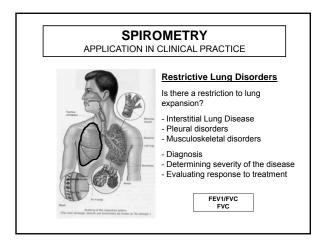
EVALUATE RESPONSE TO TREATMENT



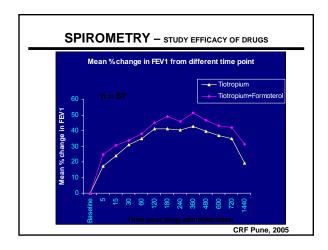
Is my asthma or COPD getting better doctor?

Objective evaluation of response to treatment – using FEV1, FVC, PEFR and FEF25-75% parameters.

SPIROMETRY


APPLICATION IN CLINICAL PRACTICE

Obstruction in the large airways


- Extrathoracic / Intrathoracic
- Laryngeal / tracheal tumors / stenosis
- Extrinsic tracheal compression

Visual inspection of the Flow-Volume Loop

SPIROMETRY - OTHER APPLICATIONS

- Patient presenting with breathlessness Pulmonary/Cardiac
- Diagnosis of Occupational Lung Disease
- Pre-operative evaluation for surgery of thorax or abdomen
- Screening high risk populations (e.g. smokers, pre-employment in industries in which occupational asthma is prevalent)

THANK YOU