SEPSIS

Dr Richard Jackson Consultant, Critical Care Unit UHCW

A young woman arrives in the medical admissions unit with several days' history of diarrhoea.

She also has:

- a macular rash
- a temperature of 38.9 C
- systolic BP 70 mmHg
- pulse 130 bpm.
- elevated urea and creatinine
- Iow platelets.

What is your immediate management?

Relative incidence of sepsis:

USA

	Per 100,000 population			
•AIDS	17			
•Colon cancer	50			
•Breast cancer	110			
•Congestive heart failure	130			
•Sepsis	300			

UK

• 33% of all ICU admissions are due to severe sepsis.

Pathogens involved in sepsis

An overview

Gram negative

- Only 60% of severe sepsis/septic shock cases are associated with confirmed infection
- The most common infection sites are: the lung, abdomen or urinary tract.

Pathogenesis of sepsis

 Initial response to any pathogens is the release of pro-inflammatory mediators

• to allow WBC to reach the infected area.

Subsequently, an anti-inflammatory response

• attempt to regain homeostasis and prevent "leaking capillary syndrome".

The ability to activate and then eventually downregulate the inflammatory response to infection is a vital immune process and it is this ability that is <u>lost in sepsis</u> and severe sepsis.

Pathogenesis of sepsis

An overview

The role of the endothelium

- Release of mediators of vasodilatation and/or vasoconstriction
- Release of cytokines and inflammatory mediators
- Allows leucocytes to access infection sites
- Plays an important role in the coagulation cascade, maintaining the physiological equilibrium between coagulation and fibrinolysis

The role of the endothelium

- In sepsis, the regulatory function of the endothelium fails, leading to:
 - Excessive vasodilation and releative hypovolaemia
 - Leaking capillaries and generalised tissue damage
 - Tissue factor (TF) release initiates **procoagulant state**
 - Micro-thrombus formation compromising blood supply and leading to tissue necrosis
 - Inactivation of Protein C and suppression of fibrinolysis

Disseminated Intravascular Coagulation (DIC)

DIC can cause:

- bleeding
- large vessel thrombosis
- haemorrhagic tissue necrosis
- microthrombi leading to organ failure.

Widespread clotting causes consumption of:

- platelets,
- clotting factors
- fibrinogen

As a result, bleeding risk increases

Disseminated Intravascular Coagulation (DIC)

Testing for DIC:

- APTT and INR are raised.
- platelets count low.
- fibrinogen level low.

After the increased coagulation and fibrin formation, *fibrinolysis* results in:

- raised FDP (fibrin degradation products)
- raised D-Dimer

Action of Activated Protein C

Activated protein C:

- Inactivates cofactors Va and VIIIa impeding the clotting process
- Enhancing fibrinolysis by neutralising PAI-1^{*} and accelerating clot breakdown
- Direct anti-inflammatory effect, decreasing cytokine production
- Inhibiting leukocyte attachment to endothelium

*Plasminogen Activator Inhibitor-1

Pathogenesis of sepsis

An overview

Mitochondrial dysfunction in sepsis

- Mitochondrial inhibition is likely to have a role in organ dysfunction
- Organs may sometimes fail despite adequate perfusion with oxygenated blood
- Oxygen utilization at a cellular level may be impaired in sepsis – 'dysoxia'
- Mitochondrial function impaired by:
 - cytokines
 - nitric oxide
 - other reactive species

<u>SSC - The disease continuum</u>

In 1991 The American College of Chest Physicians and the Society of Critical Care Medicine (ACCP/SCCM) at a Consensus Conference developed clear clinical definitions for the disease continuum.

These groups developed three terms for the progression of clinical symptoms: SIRS, *sepsis, severe sepsis and septic shock*.

• It is important to realise that these stages do not necessarily imply an increasing <u>severity</u> of infection, but rather an increasingly <u>severe systemic response</u> to infection.

<u>Systemic inflammatory response</u> <u>syndrome (SIRS)</u>

Infection	SIRS	Sepsis	Severe sepsis	Death
-----------	------	--------	------------------	-------

• SIRS (systemic inflammatory response syndrome) represents the clinical presentation of the widespread inflammation that results from a <u>variety of insults and</u> can also be caused by **trauma**, **burns, pancreatitis and other insults...**

• The conference defined an initial **SIRS**, that requires evaluation of:

- temperature,
- heart rate,
- respiratory rate and
- white blood cell count.

<u>Systemic inflammatory response</u> <u>syndrome</u>

Systemic Inflammatory Response Syndrome

Diagnosis comprises 2 or more of the following:

- Tachycardia
- Core temperature
- Tachypnoea
- WCC
- Hyperglycaemia

>90 bpm <36°C or >38°C >20 bpm $or P_aCO_2 <4.2 kPa$ >12,000 or <4,000 or>10% immature neutrophils in the absence of Diabetes Mellitus

 NB: The term 'Signs and Symptoms of Infection' (SSI) is appearing in the context of sepsis, but means essentially the same thing

<u>Clinical Progression</u>

Infection SIRS Sepsis Severe Sepsis MOF Death

Sepsis :
1) - two or more of SIRS, plus
2) - documented or <u>suspected infection</u> (presence of commonly recognised signs of infection without an identifiable pathogen being isolated)

Possible sites of a new infection

- Pneumonia or empyema
- Urinary tract infection
- Acute abdominal infection
- Meningitis
- Skin/soft tissue inflammation
- Born/joint infection
- Catheter or device infection
- Endocarditis
- Wound infection*

*May also be known as *Surgical Site Infection (SSI)* – confusingly!

<u>Modified Early Warning Score</u> (MEWS)

Score	3	2	1	0	1	2	3
Central nervous system		Confused or agitated		Alert	Respond to V oice	Respond to P ain	U: No response
Respiratory rate (breaths/min)	<8			8-20	21-30		>30
Heart rate (beats/min)	(40		40-50	51-100	101-110	111-130	>130
Systolic blood pressure (mm Hg)	(70	71-80	81-100	101-180	181-200	201-220	>220
Temperature (°C)	<34	34.0-35.0		35.1-37.5	37.6-38.5	38.6-40.0	>40

A score of *3 in any one category* or a score of *4 overall* should prompt a search for infection

What is VitalPAC?

Clinical Progression

Infection SIRS Sepsis Severe Sepsis MOF Death

Severe sepsis: sepsis + one organ dysfunction

- Circulatory failure
- Respiratory failure
- Renal failure
- Haematological failure
- Hepatic failure
 - "Brain failure"

<u>Severe sepsis – organ failures</u>

<u>Circulatory</u>

Respiratory

Renal

Haematological

• <u>Hepatic</u>

Mental

Systolic BP <90mmHg or MAP <65mmHg or reduction in SBP 40 mmHg from baseline O_2 saturation <90% on air or oxygen or P_aO_2 : F_iO_2 <40 kPa Urine output <0.5 ml/kg/hr for >2 hrs or Creatinine >176 µmol/l acutely Platelets <100x10⁹ or INR >1.5 or APTT >60s

Plasma lactate >4 mmol/l *or* Bilirubin >34 µmol/l Acute alteration in mental status

Organ Dysfunctions at Time of Severe Sepsis Recognition

Clinical Progression

Infection
SIRS
Sepsis
Severe Sepsis
MOF
Death
Septic Shock

Septic shock: Acute circulatory failure unexplained by other causes.

Circulatory failure is defined as:

persistent arterial hypotension (SBP < 90 mmHg, MAP < 65, or a reduction in SBP 40 mmHg from baseline) *despite adequate volume resuscitation*.

Septic Shock

Initially is suggested by evidence of end organ hypoperfusion:

- haemodynamic instability
- mottled skin
- decreased urine output
- altered level of consciousness
- lactic and metabolic acidosis

Later - circulatory failure leading to multi-organ failure:

- reduced SVR, leaking capillaries
- slightly increased and than decreased Cardiac Output
- coagulopathy with thrombocytopenia.
- ARDS, ARF, liver failure, hypoglycaemia,

Although most patients in shock will be hypotensive, some patients will have preserved systolic pressure early in shock as a result of excessive catecholamine release.

- A 50-year-old lady was seen in ED and treated for urinary tract infection on the basis of symptoms and a positive urine dipstick. She was discharged home the same day.
- The next day she returned having collapsed. On arrival her observations were as follows:
 - alert
 - pulse 150bpm
 - temperature 38°C
 - BP 80/50 mmHg,
 - RR 20 per minute
 - S_a0₂ 94% on air,
 - urine output normal.

What is your diagnosis, management and what other immediate tests do you perform?

Goal directed therapy in Sepsis

Surviving Sepsis Campaign Guidelines 2004 – 2007

Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients GIFTASUP 2008

<u>Trial of Early Goal-Directed</u> <u>Therapy</u>

- 263 pts presented to ED with sepsis
- Randomized into two groups:
 - I Early Goal Directed Therapy Group (EGDT)
 - II Control Group (similar, excluding S_{cv}O₂ data)
- Initial resuscitation was performed in ED over the first 6 hour period then transferred to in-patient bed or ICU
- Evaluated for a further 72 hours

Rivers et al., New Eng J Med 2001, 345

EGDT - What are the goals?

- To ensure the presumptive diagnosis is made within 2 hours of admission
- Fluid resuscitation 20 mls/kg within the recommended target of 6 hours from presentation
- Early CVP monitoring and central venous oxygen saturation measurement (S_{cv}O₂)
- Vasopressors given earlier after initial fluid resuscitation
- Cultures drawn before antibiotics administered
- Antibiotics within 3 hours of a presumptive diagnosis of a severe sepsis in ED, or 1 hour if patient already in hospital

EGTD: What are the end points?

- Aims to avoid or reverse impaired perfusion and oxygen delivery (DO₂) and prevent vital organ failure:
 - Indicators of adequate perfusion:
 - CVP 8-12 mmHg
 - MAP >65 mmHg
 - UO >0.5 ml/kg/hr

Indicators of DO₂ insufficiency:

- S_{cv}O₂ <70 %
- Lactate >4.0 mmol/L

Trial results

- The EGDT group received significantly more iv fluids (4.5l vs 3.0l), blood products and inotropic support at the end of the 6 hour period
- After 6 hrs, the EGDT group had:
 - higher blood pressure
 - higher S_{cv}O₂
 - lower Base Deficit (BE)

By the end of 72 hrs both group had received the same volume of fluid and amount of inotropic support In-hospital mortality 30% vs 46% 60 day mortality 50% vs 70%

Surviving Sepsis Campaign

Phase 1 Barcelona declaration 2002 Collaboration between US and European Critical Care Societies (Definitions, Studies and Trials)

Phase 2 Evidence based guidelines 2004-07

- Resuscitation bundles for the first 6 hours
- Management bundles for the first 24 hours

Phase 3 Implementation and education

Surviving Sepsis Campaign

Goals of the SSC:

- Build awareness of sepsis
- Improve diagnosis
- Increase the use of appropriate treatment
- Educate healthcare professionals
- Improve post-ICU care
- Develop guidelines of care
- Facilitate data collection for the purposes of audit and feedback

Surviving Sepsis Campaign

6 hour bundle (Resuscitation bundle)

24 hour bundle (Management bundle)

Bundles

<u>Definition:</u>

 A "bundle" is a group of therapies for a given disease that, when implemented together, may result in better outcomes than if implemented individually

Individual elements are <u>evidence-based</u>

 All elements must be completed to be `compliant' with the bundle for measurement purposes by organizations (eg DoH, SSC, etc)

They are NOT a substitute for physician decision-making

<u>6 Hour Sepsis Bundle</u>

- Immediate **fluid resuscitation** using crystalloids or colloids
- Obtain **blood cultures and lactate** ASAP after diagnosis of sepsis
- Antibiotics administered within 3 hours (1 hour if inpatient) of presumptive diagnosis
- Obtain **CVP** if bp is not responsive to fluids or if serum lactate is elevated
- Repeated boluses of crystalloid/colloid (250-500 ml) every 30 min until CVP >8mmHg (>12 mmHg if ventilated)
- **Vasopressors** via central line if MAP < 65 mm Hg during and after adequate fluid resuscitation eg Noradrenaline or Dopamine
- If S_{cv}O₂ <70 % after fluid replacement and Noradrenaline start inotropes (Dobutamine or Adrenaline infusion via central line) and/or give RBC's (to keep Hb above 10g/dl)

Initiation of Antibiotic Therapy in Severe Sepsis

<u>24 Hour Sepsis Bundle</u> (Management Bundle)

- Applies to patients in Critical Care
- Consider use of Recombinant human Activated Protein C using local guidelines
- Low dose steroids (Hydrocortisone 200-300mg/day i.v.) for adult septic shock patients requiring continued use of vasopressors
- Glucose control (<10 mmol/l)
- For ventilated patients inspiratory peak airway pressure <30 cmH2O

A 29 year old lady arrives in the Resuscitation room. She is drowsy, with the following vital signs:

•	bp:	80/50 mmHg		ABG:
•	pulse	130 bpm	рН	7.31
•	RR	28 per minute	Pa0 ₂	35.5 kPa
•	Temp.	38.5°C	PaC0 ₂	3.5 kPa
•	Sa02	95% on 10 l/min O ₂	Bicarb	12.7mmol/l
		via a reservoir bag mask	BE	-10.0mmol/l

She has a petechial rash on her trunk.

- She responds to voice and there is no neck stiffness.
- Her bedside glucose measurement is 6.2 mmol/L

What is your management?

