Pathophysiology of hypercapnic and hypoxic respiratory failure and V/Q relationships

Dr.Alok Nath Department of Pulmonary Medicine PGIMER Chandigarh

Jan 2006

Respiratory Failure

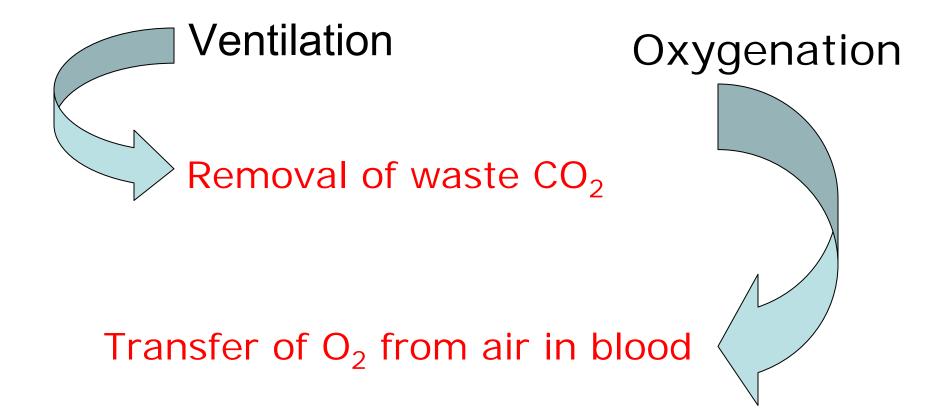
inadequate blood oxygenation or CO₂ removal **A syndrome rather than a disease**

Hypoxemic

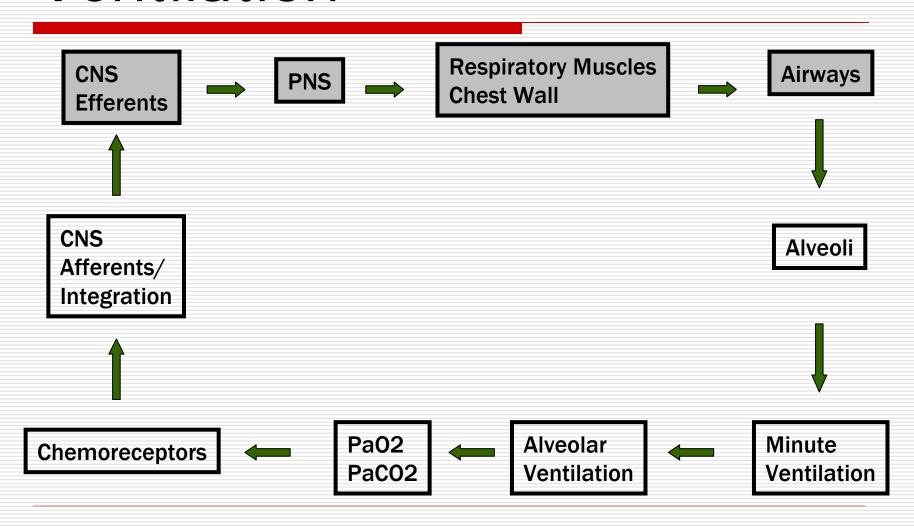
Hypercapnic

Pa02 < 60 mmHg

PaCO2 > 45 mmHg


These two types of respiratory failure always coexist

Acute


Chronic

Respiratory function

Two main categories

Ventilation

Dysfunction of any of the component leads to ventilatory failure

Chemical Stimuli

- Peripheral chemoreceptors
 - Carotid bodies, Aortic bodies
 - Stimulus: PaO2, Acidemia (pH), PaCO2
- Central chemoreceptors
 - Near the ventrolateral surface of the medulla
 - Stimulus: H+ of brain ECF (pH), PaCO2

Chemical Stimuli

- ☐ Hypoxia → peripheral receptors
- ☐ Hypercapnia → central receptors

Response to respiratory acidosis is always greater than metabolic acidosis

Partial pressures of CO₂ in blood depends on: Co₂ production Dead space Minute ventilation

VA = VCO2 / PACO2 x K

↑CO2 Production
↑Dead Space Ratio
↓Minute Ventilation

Hypercapnic Respiratory Failure

Decreased minute ventilation

$$V_T = V_D + V_A$$
 (multiplying by respiratory frequency)
 $V_E = V_D + V_A$ OR $V_A = V_E - V_D$

Acc. To alveolar ventilation equation:

$$V_A \times F_a CO_2 = V_A$$

So
$$V_{CO2} = V_A \times P_A CO_2 \times K$$

Now,
$$V_A = V_{CO2} / P_A CO_2 \times K$$

Paco₂ is inversely proportional to minute ventilation

Decreased minute ventilation

- CNS disorders
 - Stroke, brain tumor, spinal cord lesions, drug overdose
- Peripheral nerve disease
 - Guillain-Barre syndrome, botulism, myasthenia gravis
- Muscle disorders
 - Muscular dystrophy, respiratory muscles fatigue

- Chest wall abnormalities
 - Scoliosis, kyphosis, obesity
- Metabolic abnormalities
 - Myxedema, hypokalemia
- Airway obstruction
 - Upper airway obstruction, Asthma, COPD

Pathophsiology in Asthma and COPD more complex

Increase dead space

- Airway obstruction
 - Upper airway obstruction
 - Asthma, COPD
 - Foreign body aspiration (check-valve)
- Chest wall disorder
 - Kyphoscliosis, thoracoplasty etc

Increase CO₂ production

- □ Fever, sepsis, seizure, obesity, anxiety
- Increase work of breathing (asthma, COPD)
- High carbohydrate diet with underlying lung disease (high RQ)

Ventilatory Demand

Ventilatory Supply

Ventilatory Demand > Ventilatory Supply → Ventilatory Failure

Ventilatory demand depends on O_2 demand CO_2 production

dead space and minute ventilation

Ventilatory supply depends on Respiratory drive Muscle /neuron function Respiratory mechanics

This is responsible for MSV

CAUSES OF VENTILATORY FAILURE

- A. Respiratory centre
- **B.UMN**
- C.Ant.horn cell
- D.LMN
- E.NMJ
- F. Respiratory muscles
- G.Altered elasticity
- H.Loss of structural integrity
- I.Small airway resistance

Respiratory Failure in a patient with Asthma

Work of breathing
Increased dead space
Hyperventilation

Ventilatory Demand

Airway obstruction

Decreased FEV₁

Altered pulmonary mechanics

Ventilatory Supply

Ventilatory Demand > Ventilatory Supply → Ventilatory Failure

Respiratory failure in COPD

- Decreased FEV₁
 - Relationship is curvilinear; CO₂ retention does not occur unless FEV₁ < 20 30 % of normal</p>
- Altered lung mechanics
- Increased dead space ventilation
- Expiratory air trapping due to obstructive physiology
- □ Respiratory muscle fatigue
- Decreased muscle blood flow
- □ Increased CO₂ production

 $PaO_2 = [FiO_2(Patm-Ph_{20}) - PaCO_2/R] - [A-a gradient]$

Shunt:

Blood pathway which does not allow contact between alveolar gas and red cells

PHYSIOLOGICAL

PATHOLOGICAL
Pulmonary
Non-pulmonary

- \square Normal shunting: (2~3% of C.O.)
 - Some of the bronchial arterial blood
 - Some of the coronary venous blood
- Abnormal shunting:
 - Congenital defects in the heart or vessels
 - □ ASD, VSD(with reversal), Pulmonary AVM
 - Lung atelectasis or consolidation
 - Pneumonia, Cardiogenic or Non-cardiogenic pulmonary edema

Shunt (right-to-left shunt)

Resistant to O_2 supplementation when shunt fraction of CO > 30%

- Etiologies of Shunt physiology
 - Diffuse alveolar filling
 - Collapse / Consolidation
 - Abnormal arteriovenous channels
 - Intracardiac shunts

Hallmark of shunt is poor or no response to O2 therapy

Usually causes hypoxemic respiratory failure

- Shunt can lead to hypercapnia when more than 60% of the cardiac output
 - Ventilatory compensation fails
 - → ↑RR → Increased dead space
 - ↓ total alveolar ventilation
 - Respiratory muscle fatigue

- Ventilation-Perfusion mismatch
 - Gas exchange depends on
 - V/Q ratio
 - Composition of inspired gas
 - Slopes and position of relevant blood gas dissociation curves

CO₂ lost in alveolar gas from capillary:

$$V_{CO2} = Q(C_{vco2} - C_{cco2})$$

CO₂ lost from exhaled gas into air

$$V_{CO2} = V_A \times P_{ACO2} \times K$$

In steady state CO₂ lost from capillary and alveoli is same

So
$$V_a x P_a co2 xK = Q(C_{vco2} - C_{cco2})$$

i.e.
$$V_A/Q = (C_{vco2}-c_{cco2}/P_Aco_2)x K....(1)$$

Similarly for O_2 :

$$V_{O2} = V_1 \times Fi_{O2} - V_a \times F_{AO2}$$

And..
$$V_{O2} = Q(C_{O2} - C_{VO2})$$

Now, as Inspired $V_A = Expired V_A$

So,
$$V_A/Q = Cc_{O2} - Cv_{O2} / F_{1O2} - F_{AO2}$$
 (2)

- In normal lungs 5-10 mm difference in alveolar and arterial blood is due to physiological inequality
 - Gravitationally based inequality
 - Fractally based inequality
 - Longitudinally based inequality
 - Collateral ventilation
 - Reactive vaso- and broncho-constriction

Ventilation-Perfusion Mismatch

- Vascular obstruction
 - Pulmonary embolism
- Air-space consolidation
 - Pneumonia, Pulmonary edema
- Airway obstruction
 - Asthma, COPD etc.
- Diffuse parenchymal lung diseases
 - ILDs, DAD etc

Models for V/Q relationship

- Both the obstructive models result in hypoxemia and hypercapnia
- But the effects on O₂ and alveolar arterial gradient exceed greatly those for CO₂
- Airway obstruction cause more hypoxemia and *less* hypercapnia than identical degrees of vascular obstruction

- Principal effects of V/Q inequality on O₂ and CO₂ exchange are:
 - Affects both gases no matter what the pathological basis of inequality
 - Causes hypoxia and hypercapnia
 - Causes more severe hypoxia than hypercapnia
 - Impairs total O₂ and CO₂ exchange by lungs

- Affects O₂ more than CO₂ in very low V/Q areas
- Affects CO₂ more than O₂ in very high V/Q areas
- Creates alveolar arterial difference for both the gases

Response to V/Q mismatch

- Physiologically the response to V/Q mismatch is primarily by:
 - Changes in mixed venous saturation
 - Increase in ventilation
 - Changes in cardiac output
- In low V/Q areas
 - in ventilation leads to significant drop in CO₂
 - But O₂ is barely affected if at all

Response to V/Q mismatch

- In high V/Q areas:
 - Both O₂ and CO₂ usually come to nearly normal levels
- Changes in cardiac output have starkly contrast effects
 - In low V/Q areas O₂ improves to some extent but,
 - In high V/Q areas there is no significant effect

- Diffusion Impairment
 - Interstitial lung disease
 - Pulmonary fibrosis, Connective tissue disease, Interstitial pneumonia, interstitial pulmonary edema
 - ARDS
 - Obstructive lung disease
 - Emphysema, Asthma

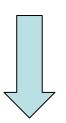
- Diffusion capacity of a gas depends on:
 - Thickness of the alveolar basement membrane.
 - Avidity of the gas to bind to hemoglobin
 - Hemoglobin concentration
 - Alveolar partial pressures of O₂
 - Capillary transit time
 - Lung volumes

The capillary transit time of RBC is 0.75 seconds.

With normal DL, it takes < 0.25 seconds to equilibration.

Only when the DL is severely limited (<0.25 normal) or the transit time is markedly shorten (<0.25 seconds) is it possible to have a PaO2 less than PAO2.

- ☐ Acute lung injury:
 - Maldistribution of ventilation
 - Shunt physiology
 - Alveolar hypoventilation
 - Diffusion limitation

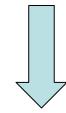

Predominantly hypoxic respiratory failure

Hypercapnia may appear in late phases

Mechanisms of hypercapnia in acute lung injury

Increased O2 consumption by lungs

Increased dead space Decreased total alveolar ventilation


Ventilatory Demand

Increasd lung compliance

Decreased FRC

Increased air flow resistance

Respiratory muscle fatigue

Ventilatory Supply

Thank You