Ventilation-perfusion in health & disease

Arjun Srinivasan

Where was the beginning?

THE AMERICAN JOURNAL OF PHYSIOLOGY

VOL. 146

AUGUST 1, 1946

No. 5

A THEORETICAL STUDY OF THE COMPOSITION OF THE ALVEOLAR AIR AT ALTITUDE¹

WALLACE O. FENN, HERMANN RAHN AND ARTHUR B. OTIS

From the Department of Physiology, The School of Medicine and Dentistry of the University of Rochester, Rochester, N. Y.

Distribution of ventilation

Spatial & anatomical variation

Rate of alveolar filling

Rate of alveolar emptying

Ventilation distribution- RC t

Clinical relevance

- Perfusion is poor & pulsatile at apex
- P_a & P_v proportionately increases from top to bottom
- P_A changes minimally with gravity
- Pressures are max at bottom
 - Pulm edema starts at bottom
 - Redistribution of blood flow to apex antler's horn

Its not just gravity!

Lung perfusion in zero gravity situations is more uniform but by no means equally distributed

Nunn's Applied respiratory physiology, 6 th edition

Understanding V/Q relationships

- Consider lung as single unit
 - Relationships between P_A O₂, P_A CO₂, alveolar ventilation & pulmonary blood flow
 - Alveolar gas equation
- Consider lung as multiple units of varying V/Q
 - Clinical consequences in health & disease

Alveolar PO₂ and PCO₂

- Determined by the ratio between ventilation and blood flow: V/Q
- PO₂ and PCO₂ are inversely related through alveolar ventilation
- Increasing V/Q produces higher P_AO₂ and lower P_ACO₂
- Decreasing V/Q produces lower P_AO₂ and higher P_ACO₂

Gas Composition in the Alveolar Space

```
PiO2 = (barometric pressure-H2O vapor pressure) xFiO2 = (760 - 47) \times 0.21 = 150 \text{ mmHg}
```

Alveolar Gas Equation

$$PAO_2 = (PiO_2) - (PaCO_2/R)$$

PaCO₂ approximates PACO₂ due to the rapid diffusion of CO₂

R = Respiratory Quotient $(VCO_2/VO_2) = 0.8$

In a normal individual breathing room air:

$$PAO_2 = 150 - 40/0.8 = 100 \text{ mmHg}$$

Ventilation/perfusion ratio (V/Q)

V/Q distribution in health

West JB, <u>Respiratory Physiology</u>, <u>The Essentials</u>, 6th ed. 2000, Lippincott, p. 54.

V/Q ratio in disease

Low V/Q Effect on Oxygenation

Oxyhemoglobin Dissociation Curve

Low V/Q Effect on Oxygenation

HIGH V/Q Effect on Oxygenation

High + low V/Q = ?

Local \uparrow V/Q above ~1 has minimal effect on $[O_2]$

Thus ↑ V/Q in one part of lung can't compensate for ↓ elsewhere

PCO₂ in V/Q Mismatch

- Increased ventilation can compensate for low V/Q units
 - Shape of CO2 curve
- Total ventilation (VE)
 must increase for this
 compensation

Infinity

↑V/Q Dead space

Zero

↓V/Q Shunt Venous admixture

Ventilation to Perfusion Mismatch

Pure Shunt

Perfusion with No Ventilation

Shunt Like Units

shunt

Pure Dead Space

Dead Space Like Units

Ventilation with No Perfusion

Dead space

3- compartment model

'Ideal' Alveolar Air and the Analysis of Ventilation-Perfusion Relationships in the Lung R. L. RILEY 1949

Dead space

Defined as wasted ventilation

- Classification
 - Anatomical (1 ml / pound of ideal body wt)
 - Alveolar
 - Physiological
 - Anatomical + alveolar

Physiological Dead Space by Bohr's Method (for CO2)

$$V_{T} \times F_{E} = V_{A} \times F_{A}$$

$$V_{T} = V_{A} + V_{D}$$

$$V_{A} = V_{T} - V_{D}$$

$$V_{T} \times F_{E} = (V_{T} - V_{D}) \times F_{A}$$

$$\frac{V_{D}}{V_{T}} = \frac{F_{A} - F_{E}}{V_{T}}$$

$$\frac{V_{D}}{V_{T}} = \frac{P_{A}CO2 - P_{E}CO2}{V_{T}} \quad (Bohr Equation), so...$$

$$V_{T} = \frac{P_{A}CO2 - P_{E}CO2}{V_{T}}$$

Physiologic Dead Space & V/Q Mismatch

Hyperinflation

- Airway Obstruction
- Dynamic Hyperinflation
- Tidal Volume
- PEEP

Low Perfusion

- Low Cardiac Output
- Pulmonary Vascular Injury
- Extravascular Compression

No Perfusion

- Pulmonary Embolus
- Vascular Obliteration
- Emphysema

Shunt equation

$$Qt \times CaO_2 = [(Qt - Qs) \times Cc'O_2] + [Qs \times C\bar{v}O_2]$$

$$\frac{Qs}{Qt} = \frac{Cc'O_2 - CaO_2}{Cc'O_2 - C\overline{v}O_2}$$

Causes of Shunt

- Physiologic shunts
 - Bronchial veins, pleural veins
- Pathologic shunts
 - Intracardiac
 - Intrapulmonary
 - Vascular malformations
 - Unventilated or collapsed alveoli

Normal shunt fraction

• ~ 5 %

- Due to
 - Physiological shunt
 - Gravity related V/Q mismatch
- Contributes to A-a D O₂
 - -10 15 mm hg

A a DO₂

- PAO2 (alveolar gas equation)- arterial PaO2
- In a totally efficient lung unit with matched V/Q, alveolar and capillary PO2 would be equal
- Admixture of venous blood or V/Q scatter from low V/Q lung units will increase A a DO₂
- Increases ~ 3 mm hg every decade after 30 yrs of age

Shunt VS. V/Q scatter

- Calculated shunt fraction or A a DO₂
 - Does not differentiate
- Response of pa O₂ to increasing Fi O₂
- V/Q scatter
 - Pa O₂ increase with small increase in FiO₂(.21-.35)
- Pure shunt
 - Not much response

MIGET

- 50 parallel gas exchange units characterized by V_A-Q ratio.
- Fit predicted P_E & P_a to experimental data.
- Output: Ventilation and perfusion distributions.

Compensation of V/Q inequality?

- $\uparrow V/Q \rightarrow local hypocapnia \rightarrow \uparrow pH \rightarrow local bronchoconstriction (<math>\downarrow V/Q$)
- ↓V/Q → ↑CO₂ → ↑ ventilation
 improves CO₂ > O₂ (dissociation curves)
- \downarrow V/Q \rightarrow hypoxic pulmonary vasoconstriction

Points to remember

- Ventilation and Perfusion must be matched at the alveolar capillary level
- Most important cause of hypoxemia in most respiratory diseases
- V/Q ratios close to 1.0 result in alveolar PO2 close to 100 mmHg and PCO2 close to 40 mmHg
- V/Q greater than 1.0 increase PO2 and Decrease PCO2. V/Q less than 1.0 decrease PO2 and Increase PCO2
- Shunt and Dead Space are Extremes of V/Q mismatching.
- A-a Gradient of 10-15 Results from gravitational effects on V/Q and Physiologic Shunt