Exhaled & serum biomarkers in pulmonary diseases

Arjun Srinivasan

What are biomarkers?

Why resort to biomarkers?

- Early diagnosis
- Differentiating diseases
 - Classic
 - Cardiogenic vs. non cardiogenic PE
 - Sepsis vs. no sepsis
- Monitoring disease activity
- Prognostication
- Monitoring response to therapy

Source

- Exhaled breath
 - FENO
 - Other Exhaled breath condensate (EBC)
- Serum
 - CRP
 - Procalcitonin
 - S-TREM 1
- Sputum / BAL
- Tissue

 Micron/ sub-micron particles emanating from mouth / ET have been identified

- Origin is of speculation
 - Sheer force of turbulence aerosolizing airway lining fluid
 - Alveolar origin due to force applied to open alveoli- potential to kinetic conversion

Points to consider

- How to collect?
- What to collect ?
- How to isolate ?
- Contribution with respect to particle size
- Standardization in disease & health
- Dilution factor
- Contamination factor

NO synthesis

Fractional Exhaled Nitric Oxide (FENO)

- 3 isotypes
 - Calcium dependent
 - Endothelial
 - Neurogenic
 - Calcium independent
 - Inducible (main constituent)
- Volatile EBC
 - Measured by its reaction with Ozone by chemiluminescence
- Measured
 - Offline
 - Online

Functions of NO

Factors affecting FENO

- Pulmonary
 - Flow measured @ constant rate of 50 ml/s
 - Nasal contamination- breathing against closed palate
- Age
 - Increases with age esp children
- Sex
 - Male > females (recent studies contradictory)
- Anthropometric factors
 - Height -strong +ve corelation
 - BMI &Race- not enough evidence

- Smoking & alcohol
 - Decreases FENO
- Dietary habits
 - Radish , lettuce , water, caffeine & fats increase
 FENO
- Medication
 - Steroids & montelukast decreases
 - L-arginine & B agonist increases
- Others
 - Decreases after exercise, bronchoprovocation, spirometry & sputum induction

Reference values

Difficult to establish due to numerous confounding factors

Largest study in normal subjects involved > 3,300 pts

 Defined normal value between 24-54 ppb depending on age & height

FENO in Br asthma

Over 400 papers looking at various aspects of asthma management

Diagnosis

 Small studies have shown FENO may be an useful screening tool in high risk individuals

SALT study evaluat ma control is to be	

Atopy

- Elevated in atopic individuals as a marker of eosinophillic inflammation
- Atopic asthmatics have even higher levels
- FENO is also increased in allergic rhinitis
- Factors need consideration while interpreting FENO values
- Reduce sensitivity of FENO as a screening tool for asthma in community

COPD

- Conflicting data from studies
- Inversely proportional to FEV1, DLCO, SaO2
- Normal or only slightly elevated in COPD
 - Smoking decreases NO
 - Possibly due to conversion to peroxynitrite & nitrate
- Usually elevated during exacerbations
- Need to evaluate role in certain subsets like Exsmokers
- Data emerging for use of CalvNO as marker of early peripheral inflammation

PAH

- Etiology is due to reduced vasodilator activity
- NO is a potent vasodilator in pulmonary circulation
- Serial FENO levels to monitor disease activity
- It is inversely proportional to pulmonary artery pressures
- Increase with successful lowering of pressures with therapy

ILD

Increased due to CalvNO secondary to reduced DLCO

- Lung transplantation
 - For detecting
 - Infection low sensitivity (57%)- not a good tool
 - BOS high FENO has a good NPV but low specificity & PPV
 - Acute rejection
- Cystic fibrosis & ciliary dyskinesia
 - Decreased levels

Clinical application

Table 1 Respiratory and non-respiratory conditions in which $F_{\text{E}}NO$ measurements may have a role in diagnosis

Increased F _E NO	Variable changes in FENO reported	Decreased F _E NO
Asthma ¹ ⁷⁹ Late asthmatic response ⁸⁰ ⁸¹ Allergic rhinitis ¹⁹ Viral infections ⁴³ ⁴⁴ ⁸² Hepatopulmonary syndrome ⁸³ Liver cirrhosis ⁸⁴ ⁸⁵ Acute/chronic rejection of lung transplant including bronchiolitis obliterans ^{86–90}	Bronchiectasis ^{91–93} COPD ^{17 75 78 94–102} Fibrosing alveolitis ¹⁰³ Sarcoidosis ¹⁰⁴ Systemic sclerosis ^{105–107}	Cystic fibrosis ⁹¹ 108-110 Primary ciliary dyskinesia ¹¹¹ 112 Pulmonary hypertension ¹¹³ HIV infection ¹¹⁴ ARDS ¹¹⁵

H_2O_2

- Produced by
 - Superoxide dismutase mediated conversion of superoxide ions
- Detected by
 - Spectrophotometric method using horseradish peroxide
- Overlap in levels found in asthma & COPD hence may be non specific biomarker
- Levels proportional to dyspnoea, sputum neutrophils – s/o disease activity

Eur Respir J 2008; 32: 472-486

pН

- Airway acidification & regulation implicated in pathogenesis of obstructive lung disease
- Unlike other EBCs pH in normal healthy volunteers from different studies similar
- Median pH ~ 8 (data from > 400 subjects)
- This suggest reproducibility across laboratories
- pH is decreased across spectrum of pulmonary diseases in the limited studies available
- Significant overlap across different diseases present

Leukotriene B4

- Produced from arachidonic acid by 5lipooxygenase
- Estimated using ELISA
- Potent neutrophil chemoattractant role in airway inflammation
- Mainly been evaluated in COPD & asthma
- Significant variability seen among patients with similar profile across different study groups
- Overlap between pts & healthy controls

8- Isoprostane

- Produced by free radical peroxidation of arachidonic acid
- Supposed marker of oxidative stress in lungs
- Measured by ELISA
- Mainly elevated in COPD & asthma
- Baseline across similar clinical profile is variable in different studies
- Hence repeatability & standardization are difficult to achieve

Eur Respir J 2008; 32: 472-486

Prostaglandins

- PGE2 is elevated in stable COPD & asthmatics who are smokers but not in non-smoking asthmatics
- TXB2 is elevated in asthmatics but not in COPD
- Profile of PG may differ in asthma & COPD
- More studies needed to establish normal levels & variability

Other EBC

- Small studies have shown increase as well as positive co-relation with disease activity for various EBC
 - Ammonia
 - Nitrates & nitrites
 - Hydrocarbons(ethane , pentane)
 - **–** CO
- All hampered by size of study, expense, lack of reproducibility, standardization, validation & hence inability for use outside research setting

Serum biomarkers

- Ideal marker
 - Rise before clinical manifestation
 - Easy to measure
 - Help target intervention
 - High sensitivity
 - Consistent results
 - Short half life
 - Cost effective

- Inflammatory biomarkers
 - CRP
 - Procalcitonin
 - S-TREM 1
 - Copeptin
 - Cytokines
- Protein biomarkers
 - CEA
 - CYFRA
 - SP -A & SP D

CRP

- Acute phase reactant
- Increased in most forms of tissue damage, inflammation & infection
- Liver secretes it in response to IL 6
- Most extensively studied biomarker
- Evaluated in almost all subspecialties of medicine !!!
- Pulmonary diseases
 - COPD
 - Asthma
 - CAP/ VAP & sepsis

CRP in COPD

Systematic review of studies showed baseline
 CRP is elevated in stable COPD

CRP in AECOPD

- CRP tends to co relate with severity of exacerbation
- Decreases in responders but data is only from observational studies
- Effect of steroids on CRP unclear

CRP in CAP / VAP

- Prediction of VAP / CAP
 - More so for VAP / HAP in admitted pts
 - Requires serial monitoring (possibly daily)
- Surrogate tool for diagnosis
 - Most sensitive of the available biomarkers for thoracic infections
 - In two studies was better than procalcitonin
- Monitoring therapy
 - Short half life
 - Hence shows decreasing trend in responders

Patterns of CRP course in pneumonia

Current Opinion in Infectious Diseases 2008, 21:157-162

CRP in asthma

- With the advent of hs-CRP several studies have been published recently
- Including one from India
- Salient points
 - Elevated in asthma
 - Co-relate with disease severity
 - May be surrogate marker for systemic inflammation

CRP in sepsis

- It is elevated in sepsis
- Performs better than clinical parameters in predicting infection
- Low sensitivity for differentiating SIRS or non septic shock from sepsis
- Was hailed as a prognostic marker –same has been challenged in recent trials
- In general inferior to PCT as a biomarker in sepsis

Procalcitonin

In sepsis

- Advantages
 - Relatively specific marker for sepsis
 - Differentiates SIRS from septic shock
 - Absolute & more importantly persistent elevation co relates with organ dysfunction scores & poor prognosis
 - Serial measurements have more meaning
 - < .5ng/ ml & > 2 ng/ml a/w low & high risk respectively for sepsis
- FDA has approved it for use in critically ill with emphasis on
 - Conjunction with other lab & clinical parameters
 - Serial values to be interpreted rather than a one

Disadvantages

- Available assays are relatively insensitive for assessment of minor daily variations
- Though general cut offs have been defined but evidence for same are weak (based on few studies)
- Marker has been applied over spectrum of diseases, its utility in individual pt needs clinical discretion
- Utility in presence of renal failure not defined
- Cost

PCT in pneumonia

- Relatively insensitive for predicting pneumonia in the absence of wide spread sepsis
- For deciding whether to start antibiotic
 - Two studies compared procalcitonin based vs.
 standard protocol for need for antibiotic therapy
 - Significant decrease in duration of therapy & cost with no morality difference
 - Offset by cost of serial procalcitonin

S-TREM 1

In sepsis & pneumonia

- Few single centre trials have shown
 - Sensitive marker for distinguishing sepsis from SIRS
 - Potential as a useful biomarker in sepsis
- Uncertainties
 - No real large RCTs
 - Value of serial measurement unclear
 - Conflicting reports on course of illness & plasma level co-relation

Copeptin

- Secreted along with AVP from pre-pro-vasopressin
- Stable in withdrawn blood for days
- Blood levels have been used in diagnosis of
 - Diabetes insipidus
 - Cardiovascular disease
 - Sepsis
 - Pneumonia
 - AECOPD
- Data for support of its use in pulmonary diseases is emerging

ARDS

 Long PTX 3 was found to be elevated in pts of ARDS in a single trial

- In a recently published study by ARDSnet group
 - IL 8, neutrophil chemotactic factor & SP-D levels were found to be significant in predicting mortality when interpreted with clinical predictors

Biomarkers in Ca lung

CEA

- Elevated in adeno ca & LCLC
- Limited value when used alone
- It is used in combination with CYFRA for diagnosis
- Can also be used to monitor therapy in NSCLC
- CYFRA
 - CYFRA 21-1 potential for monitoring Rx in NSCLC
- Both are non specific biomarker also elevated in other cancers
- ProGRP & NSE are potential tools for diagnosis & monitoring Rx in SCLC

BMB reports 2008; 41(9): 615-625

Summary

- No single biomarker is ideal
- Our understanding of most is still incomplete
- A panel of biomarkers could be more helpful with each supplementing the other
- Need for more reliable assays
- Serial monitoring would hold the key in the future in both acute & chronic pulmonary diseases