ILD-INTRODUCTION

- Interstitial lung disorders are heterogeneous group of lung disorders with variable degree of pulmonary fibrosis
- Diffuse parenchymal lung disease is, perhaps a more appropriate descriptive term.
- Incidence ranges from 3-26/1,00,000 per year.
- Prevalence of preclinical and undiagnosed ILD is estimated to be 10 times that of clinical recognized disease.
- IPF is the most common form representing at least 30 percent of the incident cases.

ILD-INTRODUCTION

- Syndromic diagnosis with common clinical features
 - > Exertional dyspnea
 - » Bilateral diffuse infiltrates on chest radiograph
 - > Restrictive lung defects, \DLCO, abnormal (PAo2-Pao2)
 - > Absence of pulmonary infection and neoplasia
 - Histopathology: varied degrees of fibrosis and inflammation, with or without evidence of granulomatous or secondary vascular changes in pulmonary parenchyma

ILD-SYMPTOMS

- Respiratory symptoms
 - Exertional dyspnea
 - Cough
 - * nonspecific, but may be an initial complaint
 - Cough as initial complaint raises possibility of superimposed/coexistent airway disease
 - 1. RB-ILD
 - Sarcoidosis
 - 3. Hypersensitivity pneumonitis
 - 4. Pulmonary Langerhans cell histiocytosis
 - Lipoid pneumonia
 - Productive cough long standing IPF with traction bronchiectasis

ILD-SYMPTOMS

- Respiratory symptoms (contd)
 - > Hemoptysis
 - Diffuse alveolar hemorrhages (33% no hemoptysis)
 - Lymphangioleiomyomatosis
 - * Tuberous sclerosis
 - Pulmonary veno-occlusive disease
 - · Drugs such as D-pencillamine
 - Known case of ILD R/o
 - 1. Malignancy
 - 2. Pulmonary embolism
 - 3. Infection.

ILD-SYMPTOMS

- Respiratory symptoms (contd)
 - Chest pain
 - Pleuritis SLE (50%), RA(25%)& other collagen vascular diseases
 - Pneumothorax (40%)
 - Substernal chest pain sarcoidosis
 - > Wheezing
 - Airway diseases
 - Churg-Strauss
 - 2. Chronic eosinophillic pneumonia
 - Endobronchial lesions
 - 1. Sarcoidosis
 - 2. Wegner's
 - 3. Amyloidosis
 - Inflammatory bowel disease

ILD-SYMPTOMS ■ Non Respiratory symptoms

- > Arthritis Sarcoidosis and collagen vascular diseases
- Ocular Sarcoidosis, collagen vascular diseases & HLA-B27 associated diseases
- > Skin and muscle Polymyosistis
- > Sicca syndrome Sarcoidosis, Sjogrens and other CVD
- GERD IPF and Scleroderma
- > Lower GI symptoms Inflammatory bowel disease
- $\succ \ \ Recurrent \ sinusitis Wegners \ granulomatos is$
- > Neurological symptoms Sarcoidosis, Vasculitis
- > Epilepsy & mental retardation Tuberous sclerosis
- > Diabetes inspidus Sarcoidosis, PLCH

ILD-DEMOGRAPHY

AGE

- > Age 20-40 Years
 - Sarcoidosis
 - 2. Connective tissue disease-associated ILD
 - 3. Lymphangioleiomyomatosis
 - 4. Pulmonary Langerhans cell histiocytosis,
 - 5. Inherited forms of ILD
- Age >50 Years
 - IPF appx 2/3 of pts are >60 years old at time of diagnosis

ILD-DEMOGRAPHY

SEX

- > Male predominance
 - * PLCH
 - * Pneumoconiosis
 - * Rheumatoid arthritis ILD
- > Female predominance
 - * LAM
 - * Tuberous sclerosis
 - * Hermansky-Pudlak syndrome
 - * Collagen vascular disorders

ILD-HISTORY

Smoking

- > Current or former smokers
 - 1. RB-ILD (100%)
 - 2. LCH (90%)
 - 3. DIP (90%)
 - IPF
- > Never or former smoker
 - 1. Sarcoidosis
- Hypersensitive pneumonitis
- Active smoking increased complications in good pasture syndrome

ILD-HISTORY

Medication history

- Temporal onset of events
 - Antibiotics Sulfasalazine, Nitrofurantoin, Ethambutol & Minocycline
 - > Anti-inflammatory Aspirin, NSAIDS, Gold & Pencillamine
 - > Anti-arrhythmics Amiodorane, B-blockers
 - > Anti-convulsants Carbamazepine, Dilantin
 - > Diuretics Hydrochlorothiazide
 - > Chemotheraupatic agents
 - Alkylating agents Cyclophosphamide, Melphalan, Busulfan, Chlorambucil, Procarbazone
 - * Anti-metabolites Methotrexate, Azathioprine
 - * Nitrosourea's Carmustine, Lomustine, Semustine
 - * Antibiotic's Mitomycin, Bleomycin
 - Others Etopside, Taxol's, Thalidomide, INF-α, GefItinib

ILD-HISTORY

Medication history (Contd)

- Temporal onset of events (Contd)
 - > Drug induced SLE INH, Procainamide, Hydralazine
 - > Illicit drugs Heroin, Methadone, Propoxyphene, Cocaine & Talc
 - > Miscellaneous- Radiation, Oxygen, L-Tryptophan, Bromocriptine
 - Alternative medicines (herbal, naturopathies, vitamin & mineral supplements)
 - OTC, Oily nose drops, Petroleum products, Amino acid supplements
- Symptoms weeks to years after the drug has been discontinued (eg, carmustine).

ILD-HISTORY

Occupational history

- Detailed history of occupation
 - Pneumoconioses miners
 - > Silicosis sand blasters & granite workers
 - Asbestosis welders, electricians, mechanics, workers with brakes, shipyard workers
 - Berylliosis aerospace, nuclear, computer & electronic industries
 - Dental worker pneumoconiosis dental workers
 - Hypersensitive pneumonitis farm workers, poultry workers, bird breeders
- The degree of exposure, duration, latency of exposure, and the use of protective devices should be elicited

ILD-HISTORY

- Environmental exposure history
 - > Exposures to pets (especially birds)
 - > Air conditioners
 - > Humidifiers
 - > Hot tubs
 - > Evaporative cooling systems
 - > Passive exposure in the family

Family history

- > Autosomal dominant pattern (with or without incomplete penetrance)
 - · Idiopathic pulmonary fibrosis
- Sarcoidosis
- * Tuberous sclerosis
- Neurofibromatosis
- > Autosomal recessive pattern
 - Niemann-Pick disease
 - · Gaucher's disease
 - * Hermansky-Pudlak syndrome

ILD-HISTORY

ILD-SIGNS

Pulmonary

- Crackles
 - > Dry, velcro, end inspiratory, predominantly bibasilar
 - > Common in many chronic ILD
 - > 80% of cases of IPF
 - Less common in granulomatous diseases such as sarcoidosis, HP(25%)
- Inspiratory squeaks
 - > Mid inspiratory, high pitched
 - > Seen in Primary bronchiolitis
 - > Airway centred pathologies hypersensitive pneumonitis

ILD-SIGNS

Pulmonary (contd)

- Clubbing
 - Common IPF (50%), DIP(50%), Asbestosis(43%), chronic HP
 - > Rare RB-ILD
 - > Uncommon Sarcoidosis, Acute ILD, COP, LIP, CVD-ILD
- Cor pulmonale
 - > CVD- ILD (scleroderma)
 - > Veno occlusive diseases
 - > Advanced fibrosis (IPF, vital capacity <50%, DLCO <30%)

ILD-SIGNS

Extra Pulmonary

- Skin abnormalities, lymphadenopathy, hepatosplenomegaly sarcoidosis.
- Maculopapular skin rashes amyloidosis, CVD, neurofibromatosis, tuberous sclerosis, LCH, churg strauss, drug induced.
- Erythema nodosum Sarcoid, Behcets, IBD.
- Subcutaneous nodules rheumatoid arthritis, neurofibromatosis.
 Proximal muscle weakness polymyositis.
- Arthritis CVD, IBD, Sarcoid, Behcets, Ankylosing spondylitis.
- Sicca syndrome sjogrens, sarcoidosis, CVD
- Uveitis IBD, Sarcoid, Behcets, Ankylosing spondylitis.
 Scleritis vasculitis, SLE, RA, Scleroderma, sarcoidosis.
- Systemic HTN CVD, Neurofibromatosis, DAH syndromes
- Neurological sarcoid, behcets, LCH
- Arthralgias are also seen in IPF

ILD-INVESTIGATIONS


CHEST XRAY

- Normal CXR doesn't rule out ILD (10% normal- HP)
- All previous radiology to be reviewed
- Most common radiological abnormalities are
 - > Reticular
 - > Nodular
 - > Mixed (alveolar filling + interstitial markings)
- Distribution and appearance of abnormalities help in narrowing the diagnosis
- The correlation between the roentgenographic pattern and the stage of disease (clinical or histopathologic) is generally poor.
- Only honeycombing (small cystic spaces) correlates with pathologic findings and, when present, portends a poor prognosis.

ILD-INVESTIGATIONS-CXR

Reticular opacities Standard International Labor Office film for small irregular s opacities, less than 1.5 mm in diameter (reticular opacities). Courtesy of Paul Stark, MD.

Small, rounded nodules Standard ILO film for small rounded opacities, 3-10mm in diameter. Courtesy of Paul Stark, MD.

ILD-RADIOGRAPHY

- Normal CXR
 - > Hypersensitive pneumonitis
 - > Sarcoidosis
 - Connective tissue diseases
 - > Bronchiolitis obliterans
 - > IPF (early stage)
 - > Asbestosis
 - > Lymphangioleiomyomatosis
- Alveolar opacities
 - > Pulmonary hemorrhage
 - Eosinophillic pneumonia
 - > Bronchiolitis with organizing pneumonia
 - > Lupus pneumonitis
 - > Alveolar proteinosis

ILD-RADIOGRAPHY

Reticular or linear opacities

- > Peripheral lung zone predominance
 - 1. Eosinophillic pneumonia
 - 2. Bronchiolitis with organizing pneumonia
- Upper zone predominance
 - Granulomatous sarcoidosis, LCH, Chronic hypersensitivity pneumonitis
 - Pneumoconiosis silicosis, berylliosis, coal workers pneumoconiosis, hard metal disease
 - Miscellaneous rheumatoid arthritis (necrobiosis nodular), cystic fibrosis, ankylosing spondylitis, radiation pneumonitis, drugs (gold, pencillamine
- > Lower zone predominance
 - 1. IPF
 - 2. Rheumatoid arthritis (UIP)
 - 3. Asbestosis
 - 4. Acute hypersensitivity pneumonitis

ILD-RADIOGRAPHY

- Endstage or honey combing
 - Upper zone predominance sarcoidosis, lymphangioleiomyomatosis, LCH, chronic hypersensitivity pneumonitis.
 - Lower zone predominance IPF, Rheumatoid arthritis (UIP), Asbestosis.
- Increased lung volumes
 - * Lymphangioleiomyomatosis
 - * LCH
 - Tuberous sclerosis
 - Neurofibromatosis
 - * Sarcoidosis (stage 3)
 - * Chronic hypersensitivity pneumonitis
 - · IPF and smoker
 - * Respiratory bronchiolitis
 - * Bronchiolitis obliterans

ILD-RADIOGRAPHY

- Pneumothorax
 - > Lymphangioleiomyomatosis
 - > LCH
 - > Tuberous sclerosis
 - > Neurofibromatosis
- Kerley B lines
 - > LAM
 - > Lymphangitis carcinomatosis
 - > Amyloidosis

ILD-RADIOGRAPHY

- Pleural involvement
 - > Asbestosis
 - > Connective tissue disorders
 - > Lymphangioleiomyomatosis
 - > Sarcoidosis
 - Amyloidosis
 - > Radiation pneumonitis
- > Drug induced (Nitrofurantoin)
- Hilar or mediastinal lymphadenopathy
- Sarcoidosis
- > Berylliosis
- > Silicosis
- Collagen vascular disorders
- Amyloidosis
- > Lymphoma
- Kaposi's sarcoma

ILD-RADIOGRAPHY

- Subsegmental migratory infiltrates
 - > Churg-Strauss syndrome
 - > Allergic bronchopulmonary aspergillosis
 - > Tropical/pulmonary interstitial eosinophilia
 - > Bronchiolitis obliterans with organizing pneumonia
- Recurrent infiltrates in same location
 - > Chronic eosinophillic pneumonia (upper lobes/peripheral)
 - Idiopathic BOOP
 - Drug induced
 - > Realpse/recall radiation pneumonitis

ILD-RADIOGRAPHY

- Computed topography (HRCT)
 - > HRCT more sensitive (94% compared to CXR 80%))
 - Also identifies mixed patterns , additional pleural, hilar or mediastinal abnormalities
 - > Shows better correlation with physiological impairment
 - > Useful guide for selection of sites for BAL or biopsy
 - Normal HRCT would not exclude the presence of microscopic ILD in patients with high test probability.
 - Strength of HRCT lies in ability to give an overall assessment on severity of the irreversible changes (honeycombing and fibrosis).
 - Extent of fibrosis on HRCT shows 80%sensitivity and 85% specificity in predicting survival.

ILD-HRCT

- Useful HRCT patterns in ILD
 - > Reticular, honeycombing, traction bronchiectasis IPF,CVD-ILD, asbestosis, sarcoidosis. Eosinophillic pneumonia
 - Air space opacity, ground glass COP, CEP, AIP, AEP, PAP, Sarcoidosis
 - Nodules Granulomatous diseases, pneumoconiosis, Rheumatoid arthritis
 - > Cystic changes LAM, PLCH, LIP, Tuberous sclerosis
 - Mosaic pattern Air-trapping (constrictive bronchiolitis)

ILD-HRCT

- > Ground glass changes are nonspecific.
- > Presence of traction bronchiectasis and bronchiolectasis on HRCT does correlate with fibrosis.
- Honey combing also represents an irreversible fibrotic manifestation.
- > Acute HP- multifocal ground glass attenuation despite normal CXR & significant clinical symptoms
- Smokers with RB-ILD have patchy ground glass attenuation & b/linterstitial infiltrates with normal lung volumes.
- IPF patchy sub pleural and basilar fibrosis

ILD-PULMONARY FUNCTION TESTING

- Evaluation includes
 - > Spirometry
 - > Lung volumes
 - Diffusing capacity (DLCO)
- > Exercise induced evaluation
- Advantages
 - > Objective assessment of functional status
 - > Paring of the diagnosis
 - > Grading the severity
 - > Monitoring the response
- Limitations
 - > Cannot diagnose specific ILD
 - > Cannot distinguish between active lung inflammation and fibrosis

ILD-PULMONARY FUNCTION TESTING

- PFT Findings

 - ↓ Lung volumes (TLC, FRC,RV <80%) ↓ FEV1, FVC With Normal or ↑FEV1/FVC
 - Reduced diffusing capacity (DLCO)
- Mechanism involved
 - Increased elastic recoil (restrictive lung disease)
 Alveolar-capillary dysfunction
 Effacement of alveolar capillary units
 V/Q mismatch
- Measurement of diffusion capacity (DLCO)

 - DLCO reduction does not correlate well with disease stage Normal lung volumes with moderate to severe reduction of DLCO
 - Emphysema and ILD
 Pulmonary vascular disease
 PLCH
 LAM

ILD-PULMONARY FUNCTION TESTING

- Exercise affords most sensitive diagnostic and physiologic test for ILD
- Good correlation between degree of fibrosis and
 - Degree of arterial hypoxemia induced by exercise
 - > PAo2-Pao2 difference
- Exercise induced physiological abnormalities
 - → Work rate & maximum oxygen consumption
 - > High minute ventilation at sub maximal work
 - → Peak minute ventilation
 - Failure of tidal volume to † at sub maximal work, with disproportionate ↑ in respiratory rates
 - Increased heart rate
 - > Progressive arterial hypoxemia
 - Widening of PAo2-Pao2 difference
 - Persistent metabolic alkalosis

ILD-PULMONARY FUNCTION TESTING

- Patterns of diagnostic utility
 - > ↓MVV, MIP out of proportion to ↓ in FEV1
 - Polymyosistis
 - SLE
 - Scleroderma
 - > Interstitial pattern on CXR with obstructive pattern
 - ILD superimposed with COPD
 LAM (65-78%)
 Sarcoidosis (>50%)

 - PLCH (4-33%)
 - Tuberous sclerosis
 - Hypersensitivity pneumonitis
 - > ILD with asthma or recurrent bronchospasm
 - Churg-strauss
 - Sarcoidosis (endobronchial)
 - * Tropical eosinophillia

ILD-OTHER INVESTIGATIONS

- Tuberculin test negative in 2/3 of sarcoidosis patients
- Serum markers Surfactant protein A&B, MCP-1 and KL-6
 - > KL-6 Highest sensitivity (94%), specificty (96%), and diagnostic accuracy (94%) for ILD.
 - The clinical role of markers in ILD unclear
- Gallium scan
 - Role in suspected extra thoracic Sarcoidosis, which is not accessible for biopsy
- 99mTc-DTPA aerosal clearence
 - ^{99m}Tc-DTPA aerosal clearence is an index of lung epithelial permability
 - Increased DTPA clearence is sensitive marker of inflammation.
 - May be useful in IPF, Sarcoidosis, pneumoconiosis, Hypersensitivity pneumonitis, radiation pneumonitis

ILD-BRONCHOALVEOLAR LAVAGE

- BAL is a minor extension of routine fiberoptic bronchoscopy and may help define the stage of disease and allow for the assessment of disease progression or response to therapy.
- However, the utility of BAL in the clinical assessment and management of ILD patients remains to be established.
- Diagnostic
 - Infectious agents
 - malignancy
- Diagnosis aided by special stains or studies
- > Langerhans cell granulomatosis
- LAM
- > Pneumoconiosis
- Alveolar proteinosis
- Berylliosis (in vitro lymphocytic proliferative response)

ILD-BRONCHOALVEOLAR LAVAGE

- Bronchoalveolar lavage cellular profile
 - Lymphocytosis (>20% of cellularity)
 - Hypersensitive pneumonitis (60-80%)
 - Sarcoidosis (acute 40-60%)
 - IPF (15-30%)
 - Berylliosis
 - Amiodorane
 - PLCH
 - Lymphoma/pseudolymphoma
 - Neutrophilia (>5% of cellularity)
 - IPF (15-40%) COP (40-70%)

 - Inorganic dust disease
 - PLCH
 - Hypersensitivity pneumonitis (early)
 - Sarcoidosis (advanced)
 - Smoking (10%)

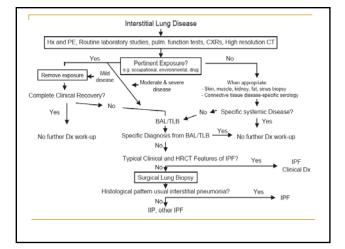
ILD-BRONCHOALVEOLAR LAVAGE

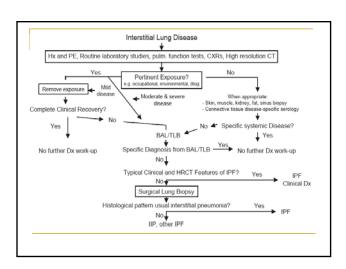
- Bronchoalveolar lavage cellular profile (Contd)
 - Eosinophilia (>5% of cellularity)
 - High count (>30%)
 - Tropical pulmonary eosinophillia (40-70%)
 - Eosinophillic pneumonia (>40%)
 - Mild to moderate count (5-30%)
 - IPF (<10%)
 - Sarcoidosis
 - PLCH
 - Drug induced
 - CVD-ILD
 - Mast cells (>1%)
 - Hypersensitivity pneumonitis
 - COP (±)
 - Advanced sarcoidosis

ILD-BIOPSY

- Indications for performing a lung biopsy
 - To provide a specific diagnosis,
 - Especially in a patient with atypical or progressive symptoms and signs
 - Normal chest x-ray or atypical radiographic features
 - Unexplained extra pulmonary manifestations
 - Unexplained pulmonary hypertension or cardiomegaly
 - Rapid clinical deterioration or sudden change in radiographic appearance.
 - 2. To assess disease activity.
 - To exclude neoplastic and infectious processes that occasionally mimic chronic, progressive interstitial disease
 - To identify a more treatable process than originally suspected.
 - To establish a definitive diagnosis and predict prognosis before proceeding with therapies which may have serious side effects.

ILD- TRANS BRONCHIAL BIOPSY


- Trans bronchial biopsy
 - Initial procedure of choice, especially when in peri bronchovascular areas
 - 1. Sarcoidosis
 - ❖ Diagnostic yield 75-89% if a/w diffuse infiltrates
 - 44-66% if no parenchymal lesion on CXR
 - Endobronchial biopsy 45-77%
 - 2. Lymphangitic carcinomatosis
 - Eosinophilic pneumonia
 - Goodpasture's syndrome
 - Pulmonary Langerhans cell histiocytosis > Is diagnostic if an infectious agent or maligancy is detected.
 - Presence of giant cell granulomas are diagnostic of heavy metal pneumoconiosis


ILD- OPEN LUNG BIOPSY

- Indications -<65 yrs of age when diagnosis is unclear
 - > H/o fever, wt loss, sweats and hemoptysis
 - > Family h/o familial ILD or IPF
 - > H/o pneumothorax
 - F/s/o vasculitis
 - > Atypical radiographic picture
 - Unexplained pulmonary HTN
 - Unexplained cardiomegaly
 - > Rapid progression or new onset rapid deterioration
- Relative contraindications to this procedure include:
 - > Serious cardiovascular disease
 - > Roentgenographic evidence of diffuse, end-stage disease, eg, "honeycombing"
 - Severe pulmonary dysfunction or other major operative risks (especially in the elderly population)
 - High likelihood that an adequate sized biopsy from multiple sites, usually from two lobes, will not be obtained [31]

ILD- HISTOPATHOLOGY

- UIP Honey combing fibrosis with prominent fibroblastic foci
- NSIP Variable interstitial fibrosis and inflammation
- DIP Intra-alveolar macrophage accumulation
- RB-ILD Peri-bronchiolar macrophage accumulation
- AIP(DAD) Diffuse alveolar damage with hyaline formation
- LIP Infiltration of interstitium and alveolar spaces of lung by lymphocytes, plasma cells and lymphoreticular elements

